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Abstract 

We discuss common method bias in the context of structural equation modeling employing the 
partial least squares method (PLS-SEM). Two datasets were created through a Monte Carlo 
simulation to illustrate the discussion: one contaminated by common method bias, and the other 
not contaminated. A practical approach is presented for the identification of common method 
bias based on variance inflation factors generated via a full collinearity test. Our discussion 
builds on an illustrative model in the field of e-collaboration, with outputs generated by the 
software WarpPLS. We demonstrate that the full collinearity test is successful in the 
identification of common method bias with a model that nevertheless passes standard convergent 
and discriminant validity assessment criteria based on a confirmation factor analysis. 
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Introduction 

    The method of path analysis has been developed by Wright (1934; 1960) to study causal 
assumptions in the field of evolutionary biology (Kock, 2011), and now provides the foundation 
on which structural equation modeling (SEM) rests. Both path analysis and SEM rely on the 
creation of models expressing causal relationships through links among variables.  
    Two main types of SEM exist today: covariance-based and PLS-based SEM. While the former 
relies on the minimization of differences between covariance matrices, the latter employs the 
partial least squares method (PLS) developed by Herman Wold (Wold, 1980). PLS-based SEM 
is often referred to simply as PLS-SEM, and is widely used in the field of e-collaboration and 
many other fields. 
    Regardless of SEM flavor, models expressing causal assumptions include latent variables. 
These latent variables are measured indirectly through other variables generally known as 
indicators (Maruyama, 1998; Mueller, 1996). Indicator values are usually obtained from 
questionnaires where answers are provided on numeric scales, of which the most commonly used 
are Likert-type scales (Cohen et al., 2003). 
    Using questionnaires answered on Likert-type scales constitutes an integral part of an SEM 
study’s measurement method. Common method bias is a phenomenon that is caused by the 
measurement method used in an SEM study, and not by the network of causes and effects among 
latent variables in the model being studied. 
    We provide a discussion of common method bias in PLS-SEM, and of a method for its 
identification based on full collinearity tests (Kock & Lynn, 2012). Our discussion builds on an 
illustrative model in the field of e-collaboration, with outputs from the software WarpPLS, 
version 5.0 (Kock, 2015). 
    The algorithm used to generate latent variable scores based on indicators was PLS Mode A, 
employing the path weighting scheme. While this is the algorithm-scheme combination most 
commonly used in PLS-SEM, it is by no means the only combination available. The recent 
emergence of factor-based PLS-SEM algorithms further broadened the space of existing 
combinations (Kock, 2014). 
    We created two datasets based on a Monte Carlo simulation (Robert & Casella, 2005; Paxton 
et al., 2001). One of the two datasets was contaminated by common method bias; the other was 
not. We demonstrate that the full collinearity test is successful in the identification of common 
method bias with a model that nevertheless passes standard validity assessment criteria based on 
a confirmation factor analysis. 
    In our discussion all variables are assumed to be standardized; i.e., scaled to have a mean of 
zero and standard deviation of one. This has no impact on the generality of the discussion. 
Standardization of any variable is accomplished by subtraction of its mean and division by its 
standard deviation. A standardized variable can be rescaled back to its original scale by reversing 
these operations. 

What is common method bias? 

    Common method bias, in the context of PLS-SEM, is a phenomenon that is caused by the 
measurement method used in an SEM study, and not by the network of causes and effects in the 
model being studied. For example, the instructions at the top of a questionnaire may influence 
the answers provided by different respondents in the same general direction, causing the 
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indicators to share a certain amount of common variation. Another possible cause of common 
method bias is the implicit social desirability associated with answering questions in a 
questionnaire in a particularly way, again causing the indicators to share a certain amount of 
common variation. 
    A mathematical understanding of common method bias can clarify some aspects of its nature. 
The adoption of an illustrative model can help reduce the level of abstraction of a mathematical 
exposition. Therefore, our discussion is based on the illustrative model depicted in Figure 1, 
which is inspired by an actual empirical study in the field of e-collaboration (Kock, 2005; 2008; 
Kock & Lynn, 2012). The illustrative model incorporates three latent variables, each measured 
through six indicators. It assumes that the unit of analysis is the firm. 
 
Figure 1. Illustrative model 
 

 
 
 
    The latent variables are: collaborative culture (𝐹�), the perceived degree to which a firm’s 
culture promotes continuous collaboration among its members to improve the firm’s productivity 
and the quality of the firm’s products; e-collaboration technology use (𝐹�), the perceived degree 
of use of e-collaboration technologies by the members of a firm; and competitive advantage (𝐹�), 
the perceived degree of competitive advantage that a firm possesses when compared with firms 
that compete with it. 
    Mathematically, if our model were not contaminated with common method bias, each of the 
six indicators 𝑥�� would be derived from its latent variable 𝐹� (of which there are three in the 
model) according to (1), where: 𝜆�� is the loading of indicator 𝑥�� on 𝐹�, 𝜃�� is the standardized 
indicator error term, and 𝜔�� is the weight of 𝜃�� with respect to 𝑥��. 
 

𝑥�� = 𝜆��𝐹� + 𝜔��𝜃��, 𝑖 = 1 … 3, 𝑗 = 1 … 6. (1) 
 
    Since 𝜃�� and 𝐹� are assumed to be uncorrelated, the value of 𝜔�� in this scenario can be easily 
obtained as: 
 

𝜔�� = �1 − 𝜆��
�. 

 

 
    If our model were contaminated with common method bias, each of the six indicators 𝑥�� 
would be derived from its latent variable 𝐹� according to (2), where: 𝑀 is a standardized variable 
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that represents common method variation, and 𝜔� is the common method weight (a.k.a. 
common method loading, or the positive square root of the common method variance). 
 

𝑥�� = 𝜆��𝐹� + 𝜔�𝑀 + 𝜔��𝜃��, 𝑖 = 1 … 3, 𝑗 = 1 … 6. (2) 
 
    In this scenario, the value of 𝜔�� can be obtained as: 
 

𝜔�� = �1 − 𝜆��
� − 𝜔�

�. 
 

 
    In (2) we assume that the common method weight 𝜔� is the same for all indicators. An 
alternative perspective assumes that the common method weight 𝜔� is not the same for all 
indicators, varying based on a number of factors. Two terms are used to refer to these different 
perspectives, namely congeneric and noncongeneric, although there is some confusion in the 
literature as to which term refers to what perspective. 
    Note that the term 𝜔�𝑀 introduces common variation that is shared by all indicators in the 
model. Since latent variables aggregate indicators in PLS-SEM, this shared variation has the 
effect of artificially increasing the level of collinearity among latent variables. As we will see 
later, this also has the predictable effect of artificially increasing path coefficients. 

Data used in the analysis 

    We created two datasets of 300 rows of data, equivalent to 300 returned questionnaires, with 
answers provided on Likert-type scales going from 1 to 7. This was done based on a Monte Carlo 
simulation (Robert & Casella, 2005; Paxton et al., 2001). The data was created for the three 
latent variables and the eighteen indicators (six per latent variable) in our illustrative model. 
    Using this method we departed from a “true” model, which is a model for which we know the 
nature and magnitude of all of the relationships among variables beforehand. One of the two 
datasets was contaminated by common method bias; the other was not. In both datasets path 
coefficients and loadings were set as follows: 
 

𝛽�� = 𝛽�� = 𝛽�� = .45.  
𝜆�� = .7, 𝑖 = 1 … 3, 𝑗 = 1 … 6.  

 
    That is, all path coefficients were set as . 45 and all indicator loadings as . 7. In the dataset 
contaminated by common method bias, the common method weight was set to a value slightly 
lower than the indicator loadings: 
 

𝜔� = .6.  
 
    In Monte Carlo simulations where samples of finite size are created, true sample coefficients 
vary. Usually true sample coefficients vary according to a normal distribution centered on the 
true population value. Given this, and since we created a single sample of simulated data, our 
true sample coefficients differed from the true population coefficients. 
    Nevertheless, when we compared certain coefficients obtained via a PLS-SEM analysis for the 
two datasets, with and without contamination, the effects of common method bias became 
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visible. This is particularly true for path coefficients, which tend to be inflated by common 
method bias. As noted earlier, path coefficient inflation is a predictable outcome of shared 
variation among latent variables. 

Path coefficient inflation 

    Table 1 shows the path coefficients for the models not contaminated by common method bias 
(No CMB) and contaminated (CMB). As we can see, all three path coefficients were greater in 
the model contaminated by common method bias. The differences among path coefficients 
ranged from a little over 20 to nearly 40 percent. 
 
Table 1. Path coefficients 
 
 𝜷𝟐𝟏 𝜷𝟑𝟏 𝜷𝟑𝟐 
No CMB .447 .409 .357 
CMB .625 .512 .435 
Note: CMB = common method bias. 
 
 
    This path coefficient inflation effect is one of the key reasons why researchers are concerned 
about common method bias, as it may cause type I errors (false positives). Nevertheless, 
common method bias may also be associated with path coefficient deflation, potentially leading 
to type II errors (false negatives). 
    As we can see, the inflation effect can lead to marked differences in path coefficients. In the 
case of the path coefficient 𝛽��, the difference is of approximately 39.82 percent. As noted 
earlier, path coefficient inflation occurs because common variation is introduced, being shared 
by all indicators in the model. As latent variables aggregate indicators, they also incorporate the 
common variation, leading to an increase in the level of collinearity among latent variables. 
Greater collinearity levels in turn lead to inflated path coefficients. 
    One of the goals of a confirmatory factor analysis is to assess two main types of validity in a 
model: convergent and discriminant validity. Acceptable convergent validity occurs when 
indicators load strongly on their corresponding latent variables. Acceptable discriminant validity 
occurs when the correlations among a latent variable and other latent variables in a model are 
lower than a measure of communality among the latent variable indicators. 
    Given these expectations underlying acceptable convergent and discriminant validity, one 
could expect that a confirmatory factor analysis would allow for the identification of common 
method bias. In fact, many researchers in the past have proposed the use of confirmatory factor 
analysis as a more desirable alternative to Harman’s single-factor test – a widely used common 
method bias test that relies on exploratory factor analysis. Unfortunately, as we will see in the 
next section, conducting a confirmatory factor analysis is not a very effective way of identifying 
common method bias. Models may pass criteria for acceptable convergent and discriminant 
validity, and still be contaminated by common method bias. 

Confirmatory factor analysis 

    Table 2 is a combined display showing loadings and cross-loadings. Loadings, shown in 
shaded cells, are unrotated. Cross-loadings are oblique-rotated. Acceptable convergent validity 
would normally be assumed if the loadings were all above a certain threshold, typically .5. As we 
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can see, all loadings pass this test. This is the case for both models, with and without common 
method bias contamination. That is, both models present acceptable convergent validity. 
    These results highlight one interesting aspect of the common method bias phenomenon in the 
context of PLS-SEM. There appears to be a marked inflation in loadings, similarly to what was 
observed for path coefficients. Since convergent validity relies on the comparison of loadings 
against a fixed threshold, then it follows that common method bias would tend to artificially 
increase the level of convergent validity of a model. 
    Table 3 shows correlations among latent variables and square roots of average variances 
extracted (AVEs). The latter are shown in shaded cells, along diagonals. Acceptable discriminant 
validity would typically be assumed if the number in the diagonal cell for each column is greater 
than any of the other numbers in the same column. 
 
Table 2. Assessing convergent validity 
 
  No CMB  CMB 
   𝑭𝟏  𝑭𝟐  𝑭𝟑   𝑭𝟏  𝑭𝟐  𝑭𝟑  
𝒙𝟏𝟏   .742 .010 -.095  .902 .072 -.075 
𝒙𝟏𝟐   .730 .029 .010  .912 .060 -.100 
𝒙𝟏𝟑   .772 .051 -.043  .900 -.075 .054 
𝒙𝟏𝟒   .771 -.061 .109  .891 .004 -.064 
𝒙𝟏𝟓   .766 .004 .042  .913 -.085 .176 
𝒙𝟏𝟔   .729 -.033 -.044  .890 .026 .001 
𝒙𝟐𝟏   .022 .690 -.102  .011 .900 .031 
𝒙𝟐𝟐   -.060 .709 -.027  -.003 .892 -.063 
𝒙𝟐𝟑   .049 .701 .005  .080 .893 -.113 
𝒙𝟐𝟒   .018 .766 .031  -.068 .921 .077 
𝒙𝟐𝟓   -.106 .731 .040  .020 .905 .002 
𝒙𝟐𝟔   .055 .766 .033  -.036 .924 .057 
𝒙𝟑𝟏   .022 -.003 .721  .020 -.005 .911 
𝒙𝟑𝟐   -.039 .029 .712  .052 -.013 .908 
𝒙𝟑𝟑   -.029 -.063 .693  -.003 -.012 .913 
𝒙𝟑𝟒   -.018 -.008 .724  -.037 .035 .909 
𝒙𝟑𝟓   .013 -.060 .754  -.065 -.072 .920 
𝒙𝟑𝟔   .041 .088 .762  .030 .065 .903 
Notes: CMB = common method bias; loadings are unrotated and cross-loadings are oblique-rotated; loadings shown 
in shaded cells. 
 
 
Table 3. Assessing discriminant validity 
 
  No CMB  CMB 
  𝑭𝟏  𝑭𝟐  𝑭𝟑   𝑭𝟏  𝑭𝟐  𝑭𝟑  
𝑭𝟏   .752 .447 .568  .901 .625 .785 
𝑭𝟐   .447 .728 .540  .625 .906 .756 
𝑭𝟑   .568 .540 .728  .785 .756 .911 
Notes: Square roots of average variances extracted (AVEs) shown on shaded diagonal. 
 
 
    That is, if the square root of the AVE for a given latent variable is greater than any correlation 
involving that latent variable, and this applies to all latent variables in a model, then the model 
presents acceptable discriminant validity. As we can see, this is the case for both of our models, 
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with and without common method bias contamination. Both models can thus be assumed to 
display acceptable discriminant validity. 
    Here we see another interesting aspect of the common method bias phenomenon in the context 
of PLS-SEM. While correlations among latent variables increase, the same happens with the 
AVEs. This simultaneous increase in correlations and AVEs is what undermines the potential of 
a discriminant validity check in the identification of common method bias. 
    In summary, two key elements of a traditional confirmatory factor analysis are a convergent 
validity test and a discriminant vadity test. According to our analysis, neither test seems to be 
very effective in the identification of common method bias. An analogous analysis was 
conducted by Kock & Lynn (2012), which prompted them to offer the full collinearity test as an 
effective alternative for the identification of common method bias. 

The full collinearity test 

    Collinearity has classically been defined as a predictor-predictor phenomenon in multiple 
regression models. In this traditional perspective, when two or more predictors measure the same 
underlying construct, or a facet of such construct, they are said to be collinear. This definition is 
restricted to classic, or vertical, collinearity. 
    Lateral collinearity is defined as a predictor-criterion phenomenon, whereby a predictor 
variable measures the same underlying construct, or a facet of such construct, as a variable to 
which it points in a model. The latter is the criterion variable in the predictor-criterion 
relationship of interest. 
    Kock & Lynn (2012) proposed the full collinearity test as comprehensive procedure for the 
simultaneous assessment of both vertical and lateral collinearity (see, also, Kock & Gaskins, 
2014). Through this procedure, which is fully automated by the software WarpPLS, variance 
inflation factors (VIFs) are generated for all latent variables in a model. The occurrence of a VIF 
greater than 3.3 is proposed as an indication of pathological collinearity, and also as an 
indication that a model may be contaminated by common method bias. Therefore, if all VIFs 
resulting from a full collinearity test are equal to or lower than 3.3, the model can be considered 
free of common method bias. 
    Table 4 shows the VIFs obtained for all the latent variables in both of our models, based on a 
full collinearity test. As we can see, the model contaminated with common method bias includes 
a latent variable with VIF greater than 3.3, which is shown in a shaded cell. That is, the common 
method bias test proposed by Kock & Lynn (2012), based on the full collinearity test procedure, 
seems to succeed in the identification of common method bias. 
 
Table 4. Full collinearity VIFs 
 
 𝑭𝟏  𝑭𝟐  𝑭𝟑  
No CMB 1.541 1.472 1.739 
CMB 2.619 2.347 3.720 
Note: CMB = common method bias. 
 
 
    While it is noteworthy that the full collinearity test was successful in the identification of 
common method bias in a situation where a confirmation factor analysis was not, this success is 
not entirely surprising given our previous discussion based on the mathematics underlying 
common method bias. That discussion clearly points at an increase in the overall level of 
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collinearity in a model, corresponding to an increase in the full collinearity VIFs for the latent 
variables in the model, as a clear outcome of common method bias. 

Discussion and conclusion 

    There is disagreement among methodological researchers about the nature of common method 
bias, how it should be addressed, and even whether it should be addressed at al. Richardson et al. 
(2009) discuss various perspectives about common method bias, including the perspective put 
forth by Spector (1987) that common method bias is an “urban legend”. Assuming that the 
problem is real, what can we do to avoid common method bias in the first place? A seminal 
source in this respect is Podsakoff et al. (2003), who provide a number of suggestions on how to 
avoid the introduction of common method bias during data collection. 
    Our discussion focuses on the identification of common method bias based on full collinearity 
assessment, whereby a model is checked for the existence of both vertical and lateral collinearity 
(Kock & Gaskins, 2014; Kock & Lynn, 2012). If we find evidence of common method bias, is 
there anything we can do to eliminate or at least reduce it? The answer is arguably “yes”, and, 
given the focus of our discussion, the steps discussed by Kock & Lynn (2012) for dealing with 
collinearity are an obvious choice: indicator removal, indicator re-assignment, latent variable 
removal, latent variable aggregation, and hierarchical analysis. Readers are referred to that 
publication for details on how and when to implement these steps. 
    Full collinearity VIFs tend to increase with model complexity, in terms of number of latent 
variables in the model, because: (a) the likelihood that questions associated with different 
indicators will overlap in perceived meaning goes up as the size of a questionnaire increases, 
which should happen as the number of constructs covered grows; and (b) the likelihood that 
latent variables will overlap in terms of the facets of the constructs to which they refer goes up as 
more latent variables are added to a model. 
    Models found in empirical research studies in the field of e-collaboration typically contain 
more than three latent variables. This applies to many other fields where path analysis and SEM 
are employed. Therefore, we can reasonably conclude that our illustration of the full collinearity 
test of common method bias discussed here is conservative in its demonstration of the likely 
effectiveness of the test in actual empirical studies. 
    Kock & Lynn (2012) pointed out that classic PLS-SEM algorithms are particularly effective at 
reducing model-wide collinearity, because those algorithms maximize the variance explained in 
latent variables by their indicators. Such maximization is due in part to classic PLS-SEM 
algorithms not modeling measurement error, essentially assuming that it is zero. As such, the 
indicators associated with a latent variable always explain 100 percent of the variance in the 
latent variable. 
    Nevertheless, one of the key downsides of classic PLS-SEM algorithms is that path 
coefficients tend to be attenuated (Kock, 2015b). In a sense, they reduce collinearity levels “too 
much”. The recently proposed factor-based PLS-SEM algorithms (Kock, 2014) address this 
problem. Given this, one should expect the use of factor-based PLS-SEM algorithms to yield 
slightly higher full collinearity VIFs than classic PLS-SEM algorithms, with those slightly higher 
VIFs being a better reflection of the true values. 
    Consequently, the VIF threshold used in common method bias tests should arguably be 
somewhat higher than 3.3 when factor-based PLS-SEM algorithms are used. In their discussion 
of possible thresholds, Kock & Lynn (2012) note that a VIF of 5 could be employed when 
algorithms that incorporate measurement error are used. Even though they made this remark in 
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reference to covariance-based SEM algorithms, the remark also applies to factor-based PLS-
SEM algorithms, as both types of algorithms incorporate measurement error. 
    Our goal here is to help empirical researchers who need practical and straightforward 
methodological solutions to assess the overall quality of their measurement frameworks. To that 
end, we discussed and demonstrated a practical approach whereby researchers can conduct 
common method bias assessment based on a full collinearity test of a model. Our discussion was 
illustrated with outputs of the software WarpPLS (Kock, 2015), in the context of e-collaboration 
research. Nevertheless, our discussion arguably applies to any field where path analysis and 
SEM can be used. 
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